12 Years Factory Heat Resistant Wire CuMn3 Cooper alloy wire to Jersey Factories
With our excellent management, strong technical capability and strict quality control system, we continue to provide our clients with reliable quality, reasonable prices and excellent services. We aim at becoming one of your most reliable partners and earning your satisfaction for 12 Years Factory Heat Resistant Wire CuMn3 Cooper alloy wire to Jersey Factories, Our company will continue to adhere to the " superior quality, reputable, the user first " principle wholeheartedly. We warmly welcome friends from all walks of life to visit and give guidance, work together and create a brilliant future!
HY Cu3 Material grades and equivalents CuMn3
HY Cu3 Main performance
Type |
% Main Chemical Composition % |
Resistivity Ω.m(20℃) |
℃ Max contimnous service Temp. of element |
Thermal EMF VS Coopere |
% Elongation |
|||
Cu |
Mn |
Ni |
Si |
|||||
HY Cu3 |
Rest |
3 |
0.12 |
200 |
6~15 |
Regular shape for all kinds of alloys | |||
Form | Specification | Supply Form | Others |
Sheet | Thickness:0.40-4.75mm,General Width:1000、1219、1500mm | Whole Coil or piece of it | Cold Annealed,Surface 2B、2E |
Plate | Thickness:4.76-60mm,Width:1500、2000、2500mm,Length:3000、6000、8000、8500mm(Under 10mm plate can be coiled) | Whole Coil or piece of it | Single hot rolling,Solid solution annealed state,Surface 1D |
Belt | Thickness:0.10-3.0mm,Width:50-500mm | Whole Coil or Specified size | Cold Annealed,Surface 2B、2E |
Bar & Rod | Rolled barΦ5-45mm,Length≤1500mm | Polished Bar(circle、Square) | Solution annealing,descaling |
Forged barΦ26-245mm,Length≤4000mm | |||
Weld tube | Outer diameterΦ4.76-135mm,Wall Thickness0.25-4.00mm,Length:≤35000 mm | Base on your requirement | |
Seamless Tube | Outer diameterΦ3-114mm,Wall Thickness0.2-4.5mm | Base on your requirement | |
Wire | Outer diameterΦ0.1-13mm | Base on your requirement | Ni & Ni alloy, Ti & Ti alloy |
Forged piece | discs,rings,squares,blocks,slabs | Base on your requirement | Steel, Alloy |
Flangs | All kinds of Flangs | Base on your requirement | Steel, Alloy |
Welding Material | Coil wire Φ0.025mm-1.6mm | Base on your requirement | Certificate of Origin:America, Sweden, Britain, Germany, Austria, Italy, France. |
Straight WireΦ1.6mm-4.0mm | |||
Welding rodΦ1.2mm-4.0mm | |||
Tube | Elbow, three links, four links, different diameter size | Base on your requirement | Ni & Ni alloy, Ti & Ti alloy |
Explosive bonded laminate | Raw Sheet Thickness≥2mm | Base on your requirement | Ni & Ni alloy, Ti & Ti alloy |
The progress of improved metallic resources is a crucial action at the leading edge of science and know-how. Metals offer unrivalled mixtures of houses and reliability at a cost which is economical. They are adaptable mainly because subtle improvements in their microstructure can cause dramatic variations in their houses. For illustration, it is feasible to purchase business steel with a energy as lower as 50 MPa or as large as 5500 MPa. They can be built with a microstructure which is finer than that of carbon nanotubes. An understanding of the progress of microstructure in metals, rooted in thermodynamics, crystallography and kinetic phenomena is crucial for the resources scientist. The bulk of the 1.4 billion tonnes of metals made annually are the outcome of developments within just the last 10 a long time
http://www.msm.cam.ac.british isles/phase-trans/2002/creep.1.html
To comprehend that the utilizes for particular metals relate to their unique qualities.
To comprehend that the qualities of metals can be improved by generating alloys.
To recall that some of the hottest alloys, called ‘Smart Alloys’ can change their qualities on demand from customers.
Duplicate the table beneath. Working with a companion, entire as a great deal of the table as you can.
Very low density, powerful, resistant to corrosion, very good conductor of energy
Good conductor of energy, resistant to corrosion, quickly formed, flexible
Shiny, very resistant to corrosion, very unreactive, soft, quickly formed
Extremely powerful, very dense.
Lightweight buildings, plane, drinks cans, higher voltage cables.
Electrical wiring, h2o pipes.
Jewelry.
Substantial buildings and significant responsibility engineering these as bridges, trains, autos and so forth.
In pure metals the atoms prepare them selves closely collectively into regular styles. This tends to make them dense and also presents them numerous of their other helpful qualities.
The layer arrangement of the atoms permits the metals to transform form if a pressure is utilized. The layers can slip around every other.
This can be helpful if you want to form the steel but not so helpful if you want it to resist the pressure and be powerful.
By mixing two or additional metals collectively the regular arrangement of the atoms is disrupted. This stops the atoms forming layers and tends to make it harder for the atoms to slide around every other. The alloy is more robust than the pure metals.
Steel B
Steel A
Steel is an alloy. Pure iron is not powerful enough to be employed in buildings. Steel contains a smaller amount of carbon. This disrupts the layers of atoms in the steel and improves the toughness of the steel considerably.
Despite the fact that it is very powerful metal will corrode (rust) quickly and it has to be regularly protected from the consequences of h2o and air.
Stainless metal is an alloy that contains other metals these as Nickel and Chromium. Stainless metal has the toughness of metal mixed with the corrosion resistance of nickel and the shininess of chromium. This tends to make it a helpful materials in programs exactly where you will need toughness mixed with magnificence and corrosion resistance..
Clever Alloys
These are alloys that can ‘remember’ their primary form. If they are deformed they can return to their primary form.
Condition memory glasses
Condition memory Stent to continue to keep a blocked blood vessel open
Metals, Alloys and Clever Alloys
Finding out Objectives:
To comprehend that the utilizes for particular metals relate to their unique qualities.
To comprehend that the qualities of metals can be improved by generating alloys.
To recall that some of the hottest alloys, called ‘Smart Alloys’ can change their qualities on demand from customers.